Dealing with Uncertainties in Angles- only Initial Orbit Determination

نویسندگان

  • Roberto Armellin
  • Renato Zanetti
چکیده

A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available, DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available, high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Optical and Radar Initial Orbit Determination

Future space surveillance requires dealing with uncertainties directly in the initial orbit determination phase. We propose an approach based on Taylor differential algebra to both solve the initial orbit determination (IOD) problem and to map uncertainties from the observables space into the orbital elements space. This is achieved by approximating in Taylor series the general formula for prob...

متن کامل

Multi-Observations Initial Orbit Determination based on Angle-Only Measurements

A new approach with the ability to use the multiple observations based on the least square approach has been proposed for initial orbit determination. This approach considers the Earth’s Oblateness by using the developed Lagrange coefficients. The efficiency of the proposed method has been tested in two scenarios. The first scenario is to use the simulated and the second one is to utilize the r...

متن کامل

Aas 16-236 Probabilistic Initial Orbit Determination

Future space surveillance requires dealing with uncertainties directly in the initial orbit determination phase. We propose an approach based on Taylor differential algebra to both solve the initial orbit determination (IOD) problem and to map uncertainties from the observables space into the orbital elements space. This is achieved by approximating in Taylor series the general formula for pdf ...

متن کامل

Determination of the best-fitting reference orbit for a LEO satellite using the Lagrange coefficients

Linearization of the nonlinear equations and iterative solution is the most well-known scheme in many engineering problems. For geodetic applications of the LEO satellites, e.g. the Earth’s gravity field recovery, one needs to provide an initial guess of the satellite location or the so-called reference orbit. Numerical integration can be utilized for generating the reference orbit if a satelli...

متن کامل

New Approach to Multiple Data Association for Initial Orbit Determination Using Optical Observations

The proposed approach aims to develop a new method of forming and processing of multiple hypotheses for initial orbit determination using optical observations. This method allows us to generalize the existing 2-dimensional flat constrained admissible region (CAR) to a unique 3-dimensional (3D) manifold of points corresponding to the pairs of observed right ascension and declination. Another adv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016